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Abstract 

In this paper, we present results for significantly improv- 
ing the performance of sequential circuit diagnostic test pat- 
tern generation (DATPG). Our improvements are achieved 
by developing results that permit dynamic, fully functional, 
collapsing of candidate faults. Fault collapsing permits the 
organization of faults into disjoint partitions based on the 
indistinguishability relation. These results are used to de- 
velop a diagnostic test pattern generation algorithm that has 
the same order of complexity as that of detection-oriented 
test generation (ATPG). Techniques to identify untestable 
faults, based on exploiting indistinguishability identifica- 
tion, are also presented. Experimental results are presented 
on the ISCAS 89 benchmark circuits. 

1    Introduction 

The aim of diagnostic test generation is to provide test 
vectors that can distinguish between every distinguishable 
fault pair and to prove the remaining pairs of faults to be in- 
distinguishable. This is in contrast with detection-oriented 
test generation which aims at generating test vectors that de- 
tect every detectable fault and proving the remaining faults 
to be undetectable. The terms distinguishable, indistin- 
guishable, detectable and undetectable take on different 
meanings with different test methodologies (multiple ob- 
servation time [1,2], single observation time [1,2] or con- 
ventional, gate-level test generation with single observation 
time and three-valued simulation [3]). However, irrespec- 
tive of the test methodology, proving indistinguishabilities 
and undetectabilities is computationally intensive. Previ- 
ous research on diagnostic test generation has primarily fo- 
cused on combinational circuits [4-7]. Research on indis- 
tinguishability identification has also been devoted mainly 
toward combinational circuits [8-11]. The words equiva- 
lence and indistinguishability carry the same meaning for 
combinational circuits; however, such is not the case for se- 
quential circuits, where the definition of sequential indistin- 
guishability itself is dependent upon the test methodology 

This research was supported in part by the Office of Naval Research 
(ONR) under grant N00014-97-1-1013, by the Defense Advanced Re- 
search Projects Agency (DARPA) under contract DABT 63-96-C-0069, 
and by the Semiconductor Research Corporation (SRC). 

used. Recent work [12,13] has defined sequential indistin- 
guishability under varying test strategies and simulation ca- 
pabilities. That work derived results on avoiding the explicit 
proving of specific indistinguishability relations. Results on 
diagnostic test pattern generation for large sequential cir- 
cuits have also been reported in recent work [14]. However, 
in contrast with this present paper, there was no attempt in 
the previous work to re-use the results already obtained dur- 
ing DATPG. The focus there was on developing an efficient 
diagnostic engine that, when given a pair of stuck-at faults, 
either generates a test sequence that distinguishes the two 
faults or concludes that they are indistinguishable. 

In this paper, we develop results that permit the dynamic 
collapsing of faults for sequential circuits. Dynamic col- 
lapsing refers to the process of collapsing faults during di- 
agnostic test pattern generation. This is in contrast with 
previous work on fault collapsing in sequential circuits [15] 
where the objective was to collapse faults statically (without 
a diagnostic test generator and possibly even before any au- 
tomatic test pattern generation). Our fault collapsing results 
are used in organizing specific classes of faults into disjoint 
partitions based on the indistinguishability relation. These 
results are used to reduce the complexity of diagnostic test 
generation algorithm (DATPG) to the same order of com- 
plexity as that of detection-oriented test generation (ATPG). 
This significant reduction is achieved by the efficient reuse 
of the intermediate results provided by the DATPG algo- 
rithm. 

2   Definitions 

In this section, we briefly review the definitions of se- 
quential indistinguishability under varying test strategies. A 
previous paper [12] developed these definitions for the con- 
text of fault diagnosis. The definitions are summarized here 
for clarity. The test strategies considered are the multiple 
observation time strategy (MOTS) [1,2,16], and the con- 
ventional gate level test generation strategy (using three- 
valued simulation to evaluate logic values) [3]. The con- 
ventional gate-level test generation strategy can in fact be 
considered to be a restricted form of the single observation 
time strategy (RSOTS), because of a possible loss in ac- 
curacy due to simulation. Concepts discussing various test 
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strategies for distinguishing sequential machines have also 
been suggested in the context of design verification [17,18]. 

Sequential indistinguishability with MOTS 

Definition 1 (Indistinguishability) A fault pair (/I./J) is 
said to be indistinguishable if there exist states S*1 and 
Sfl2 in the faulty machines corresponding to fault /i and 
fi respectively, and there exists no input sequence Y, such 
that the sequence Zh (Y, S*1) produced by the faulty ma- 
chine corresponding to /i is different from the sequence 
Zf2 (Y, 5/2) produced by the faulty machine corresponding 
to f2. 

Sequential indistinguishability with RSOTS 

As noted earlier, the restricted single observation time test 
generation strategy represents practical gate-level test gen- 
eration with three-valued (0,1,X) logic simulation. The def- 
inition of indistinguishability, defined for the previous test 
generation strategy, has worked with the assumption that 
there is no loss of accuracy that practical gate-level test 
generation procedures, targeting large sequential circuits, 
suffer from due to the evaluation of unknown values. We 
now provide the following definition to characterize sequen- 
tial indistinguishability in a practical gate-level test genera- 
tion environment that uses three-valued logic simulation. 

Definition 2 (Indistinguishability) A fault pair (f\, f2) is 
said to be indistinguishable if there exists no input sequence 
Y such that the output responses produced by the two faulty 
machines, when starting from the fully unspecified state and 
as determined by three-valued logic simulation, are differ- 
ent on a specific time unit and on a specific primary output 
(i.e., 0 in one machine and 1 in the other or vice versa). 

3   Fault Collapsing and DATPG 

Requirements 

Dynamic fault collapsing proves valuable for diagnostic test 
generation because all future operations involved in diag- 
nostic test generation, after a collapsing operation, need to 
consider only one of the two faults. Savings are achieved 
both during the test generation process as well as during di- 
agnostic fault simulation (required to evaluate the test vec- 
tors generated during the DATPG process). Let us consider 
the indistinguishable fault pair (fi,h). Our goal is to ob- 
tain conditions that enable the collapsing of these two faults 
into a single fault and not affect the rest of the diagnostic test 
generation process. It is worth noting that the conditions 
that we actually check for collapsing also ensure that the 
faulty machines in question produce "identical" responses. 

Definition 3 (Fault Collapsing Requirements) A fault 
pair (/i.,/2-) can be collapsed if for any arbitrary fault 

f3 different from both faults ./1 and f2 the following two 
conditions are satisfied. 
Condition 1.     (/i,/3)  identified as indistinguishable 
implies (/2, /3) indistinguishable and vice versa. 
Condition 2.      (/i,/s)  distinguished implies (/2,/3) 
distinguished and vice versa. 

We first note the dynamic fault collapsing result for com- 
binational circuits. Let us consider two faults /1 and /2. 

Observation: If the pair of faults (/1, /2) is declared to 
be equivalent (indistinguishable) during diagnostic test gen- 
eration in a combinational circuit, then they may be col- 
lapsed into a single class of faults and may be represented 
by either one of the faults. 

Example 

An example illustrating the use of dynamic fault collapsing 
is presented in Figure 1. In the example, two DATPG al- 
gorithms are traced to illustrate fault collapsing. The first 
algorithm runs without any fault collapsing, and the sec- 
ond algorithm runs with fault collapsing. The column Cur- 
rent Status represents a set of classes of faults. Faults from 
distinct classes have already been distinguished from each 
other, and faults in the same class have not yet been dis- 
tinguished. The column Candidate shows the current fault 
pair input to the DATPG algorithm. The column Result 
gives one of three results I, D or A, standing for indistin- 
guishable, distinguished or aborted, respectively. The last 
column Proven carries different meanings for the two algo- 
rithms. For the case without any fault collapsing, it contains 
fault pairs proven to be indistinguishable from each other, 
while with fault collapsing, the entries are sets of classes 
of faults. Each class represents faults that are proven to be 
indistinguishable from each other. 

We can see from the traces of this example that sav- 
ings are achievable in the number of indistinguishability 
relations explicitly proven by the DATPG algorithm. The 
DATPG algorithm is simplified by retaining only one of the 
faults for each time an indistinguishability relation is iden- 
tified. For example, we note that fault 2 is eliminated from 
the current status after Step 1 because fault 1 represents it 
for all future operations. The example shows that the num- 
ber of indistinguishability relations that need to be proven 
explicitly by a call to the core diagnostic test generation rou- 
tine has been reduced from 9 to 5. Fault pairs (2 3), (2 4), (3 
4) and (6 7) have been proven as a result of the collapsing 
operations. 

It is also useful to note the reductions provided in the fault 
simulation operations while evaluating the test vectors ob- 
tained when a fault pair is distinguished. As an example, 
the diagnostic fault simulator used to evaluate the capabil- 
ity of the vectors provided after Step 4 need not perform 
any simulation or evaluation operations for faults 2, 3 and 
4.  The collapsed list of faults is automatically available 



DATPG algorithm trace without collapsing 

Step Current Status Candidate Result Proven 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

(12345678) 
(12 3 45678) 
(12 3 4 5 6 7 8) 
(12 3 45678) 

(1 2 3 4) (5 6 7) (8) 
(1 2 3 4) (5 6 7) (8) 
(1 2 3 4) (5 6 7) (8) 
(1 2 3 4) (5 6 7) (8) 
(1 2 3 4) (5 6 7) (8) 
(1 2 3 4) (5 6 7) (8) 
(1 2 3 4) (5 6 7) (8) 

(12) 
(13) 
(14) 
(15) 
(2 3) 
(2 4) 
(3 4) 
(5 6) 
(5 7) 
(6 7) 

DONE 

I 
I 
I 
D 
I 
I 
I 
I 
I 
I 

[12] 
[1 2] [1 3] 

[1 2] [1 3] [1 4] 
[1 2] [1 3] [1 4] 

[1 2] [1 3] [1 4] [2 3] 
[12] [13] [14] [2 3] [2 4] 

[12] [13] [14] [2 3] [2 4] [3 4] 
[1 2] [1 3] [1 4] [2 3] [2 4] [3 4] [5 6] 

[12] [13] [14] [2 3] [2 4] [3 4] [5 6] [5 7] 
[1 2] [1 3] [1 4] [2 3] [2 4] [3 4] [5 6] [5 7] [6 7] 
[1 2] [1 3] [1 4] [2 3] [2 4] [3 4] [5 6] [5 7] [6 7] 

t Number of indistinguishability relations explicitly proven by DATPG = 9 

DATPG algorithm trace with collapsing 

Step Current Status Candidate Result Proven 
1 (12345678) (12) I [12] 
2 (13 4567 8) (13) I [12 3] 
3 (14 5 67 8) (14) I [12 3 4] 
4 (15 67 8) (15) D [12 3 4] 
5 (1)(5 6 7)(8) (5 6) I [12 3 4] [5 6] 
6 (D(5 7)(8) (5 7) I [1 2 3 4] [5 6 7] 
7 (1) (5) (8) DONE - [1 2 3 4] [5 6 7] 

t Number of indistinguishability relations explicitly proven by DATPG = 5 
ft Savings are achieved in fault simulation after a distinguished (D) result from DATPG 

Figure 1: Example illustrating the savings achievable with dynamic fault collapsing 

as the set of classes in the column Proven at the end of 
the procedure. Fault collapsing cannot be applied to se- 
quential circuits based on indistinguishability identification 
alone because of a possible failure in satisfying one of the 
two identified conditions. However, we show in the next 
section that it is possible to identify conditions that may 
be checked easily and permit the collapsing operations for 
sequential circuits under the two test strategies considered. 
The conditions developed are based on synchronizing se- 
quences and strong connectivity (for MOTS) and based on 
initializing sequences (for RSOTS). It is also reiterated that 
we do not intend in anyway to find these sequences, but pro- 
vide techniques to make use of knowledge concerning the 
existence of these sequences based on either existing (possi- 
bly detection-oriented) test vectors or information provided 
by designers. 

3.1    Fault collapsing 

We shall now identify conditions for fault collapsing 
under the restricted single observation time test strategy 
(RSOTS). 

Definition 4 (Initializability) A machine M is initializable 
with three-valued logic simulation if there exists an input se- 
quence Y, such that the resulting state ofM (evaluated by 
three-valued simulation) is fully specified on the application 
ofY, when the initial state is fully unspecified (consisting of 
allXs and corresponding to the entire state space). Initializ- 
ability is thus synchronizability subject to three-valued logic 

simulation. 

Theorem 1 Consider two faults f\ and jV Let the ma- 
chines corresponding to these two faults be Mfl and M^ 
respectively. If the fault pair (/i, f2) is identified to be in- 
distinguishable and if the machines Mfl and M*2 are ini- 
tializable, then the fault pair (h,h) can be collapsed and 
either one of the faults /i or f2 can be used to represent the 
collapsed class of faults. 

Proof We shall demonstrate that both the conditions that 
are required to be proven for fault collapsing are satisfied. 
Consider any arbitrary fault /3 different from the faults /i 
and/2. 
Condition 1. Let (/i,/3) be indistinguishable. We now 
demonstrate (by contradiction) that the fault pair (/2, /3) 
is also indistinguishable. Let us assume that the fault pair 
{h,h) is distinguishable. This implies that there exists an 
input sequence Y, such that the output responses produced 
by the two faulty machines, when starting from the fully 
unspecified state and as determined by three-valued logic 
simulation, are different on a specific time unit t and spe- 
cific primary output o (i.e., 0 in one machine and 1 in the 
other or vice versa). Without loss of generality, assume that 
the value produced by M ** is 0 and the value produced 
by M*3 is 1. Consider the output response produced by 
Mfl, starting from the fully unspecified state and as de- 
termined by three-valued simulation, to the input sequence 
Y. This output response must assume a value of X at time 
t on primary output o (otherwise, one of the pairs (/i, /2) 
or (f\,h) becomes distinguishable). However, it is known 



that the machine Mh is initializable with three-valued sim- 
ulation. Let P be an input sequence that initializes machine 
Mfl. Consider the application of the input sequence cre- 
ated by concatenating Y at the end of P to the machine 
Mh starting from the fully unspecified state. The output 
response of the machine, as evaluated by three-valued sim- 
ulation, would distinguish either (/i, /2) or (/i, /3), at the 
same vector and primary output that distinguished (/2, /3). 
Hence, we arrive at a contradiction. Because /i and /2 can 
be used interchangeably in the above argument, we have the 
first condition. 
Condition 2. Let (A, /3) be distinguished by the test vec- 
tor sequence TD. We now demonstrate that the fault pair 
(/2,/3) is also distinguished. Because the pair of faults 
(A, h) is distinguished by To, there is a primary output 
on which the responses for /i and /3 are 0(1) and 1(0), re- 
spectively. Without loss of generality, assume that the value 
produced by Mh is 0 and the value produced by Mfs is 1. 
Consider the response produced by Mh at the exact same 
primary output to the same sequence of vectors that pro- 
duced the difference in values between fx and /3. The out- 
put response could only be either the value X or the value 
0. Now, because there is an initializing sequence of vectors 
for the machine M^, say Q, the response of the machine 
Mf2 to the concatenated sequence Q followed by TD dis- 
tinguishes the pair (/2, /3). Again, because fx and /2 have 
been used interchangeably in the above argument, we have 
the second condition. 

The following result, derived from the above result, ex- 
ploits the work done by detection-oriented test generation 
under the conventional test generation strategy. 

Corollary 1 Any faulty machine proven to be undetectable 
can be collapsed with the good machine provided the fault- 
free and the faulty machines are initializable. 

3.1.1    Untestability Identification based on Indistin- 
guishability Identification 

We now present two related results that can be used for 
the rapid proving of undetectability by the use of sequen- 
tial indistinguishability identification. The results provide 
a method to prove a fault untestable by pairing it with an 
already proven untestable fault that is initializable and con- 
cluding that the fault pair is indistinguishable. If die fault 
that is proven to be untestable is combinationally redundant, 
then it may be possible to make a stronger claim regarding 
the kind of untestability that can be identified. 

Corollary 2 (Untestability identification) Consider a 
fault /i, aborted by detection-oriented test generation. 
Let fi be proven undetectable. Then, if the pair of faults 
(/li/b) is proven to be indistinguishable and if the faulty 
machine corresponding to /2 is initializable, then the fault 
/i is undetectable. 

Corollary 3 (Untestability identification) Consider a 
fault /i, aborted by detection-oriented test generation. 
Let /2 be proven combinationally redundant and initial- 
izable. Then, if the pair of faults (A, /2) is proven to be 
indistinguishable, the fault f\ is undetectable. 

Fault collapsing results similar to the one in Theorem 1 
have also been obtained for the multiple observation time 
test strategy (MOTS). These results are based on utilizing 
existing knowledge of synchronizing sequences and con- 
nectivity information [19,20] in die state transition graph 
of the circuit. These results are not presented here due to 
lack of space, but are available in a technical report [13]. 

3.2   Creation of mathematical equivalence classes 

. The properties of sequential fault collapsing developed 
are furüier exploited to show that they help organize the 
set of faults that satisfy specific properties (connectivity, 
synchronizability or initializability) into disjoint partitions. 
This is a key property that provides a remarkable reduction 
in the complexity of diagnostic test pattern generation. 

The term mathematical equivalence class is used here as 
opposed to just equivalence class in order to make a distinc- 
tion between die formal definition of equivalence as defined 
in die domain of set theory and the definition from the digi- 
tal circuit domain. 

Now, let us take die set of the faults known to be initial- 
izable and consider die indistinguishability relation on this 
set of faults. We now show that this relation is indeed a 
mathematical equivalence relation. 

Theorem 2 (Init'ble + Indist'ble =>• Disjoint Partition) 
Let the set of initializable faults be denoted by I and the 
relation R under consideration be the indistinguishability 
relation. Then, 
• (a, a) £ R (reflexive) 
• (a, b) G R implies that (b,a) € R (symmetric) 
• (a, b) £ R and (b, c) € R implies that (a, c) € R 
(transitive; from our indistinguishability results) 

We exploit the well-known property of equivalence rela- 
tions which states that the equivalence classes are all dis- 
joint. Results simüar to the above result are also achieved 
for the multiple observation time test strategy by replacing 
die initializability property with the appropriate properties 
of connectivity and synchronizabUity. These results are not 
presented here for lack of space. 

4   DATPG 

In this section, we present the new DATPG algorithm 
equipped to exploit the dynamic collapsing of faults and 
the implicit identification of indistinguishability. The pur- 
pose of the DATPG algorithm is to generate test sequences 



that distinguish every distinguishable fault pair and prove 
the rest indistinguishable. Of course, if the algorithm is un- 
able to either generate a test or prove the fault pair to be 
indistinguishable, then it simply aborts on that fault pair. 
The DATPG algorithm is typically interfaced with diagnos- 
tic fault simulation to identify any additional fault pairs that 
may have been distinguished whenever a targeted fault pair 
is distinguished. 

// Routine GetNextFaultPair() gets a new fault pair into 
// /i and /2; if there are no more pairs, it returns NULL 
// Routine Datpgt/t, f2) returns the status of the DATPG operation as 
// DISTINGUISHED, INDISTINGUISHABLE OR ABORTED 
// If the status is DISTINGUISHED, the test sequence obtained is denoted by V 
II Routine ClassSpIitDropPairs(y) performs fault simulation to determine additional 
// pairs distinguished by appending the test sequence V to the existing set 
// of test vectors and to split the existing classes into smaller ones 
// Routine Marklndis(inguishable(/i, /2) marks the pair indistinguishable 
// Routine CollapsingConditionsSatisfled(/i, /2) checks if the conditions 
// identified for the test generation paradigm being used are satisfied. 
// Routine Collapse(/i, /2) chooses one of the faults to 
// represent both the classes for the rest of the DATPG algorithm 
// and drops the other fault for future operations 
//Routine Identifylmplicitlndistinguishabilities(/i, /2) checks to identify 
// additional indistinguishabilities proven based on the currently proven relation 
// Routine MarkAborted(/i, fa) marks the fault pair as aborted 

while ((/i ,f2) = GetNextFauItPairO) { 
if(Datpg(/i, /2) == DISTINGUISHED)) 

ClassSpIitDropPairs(V); 
elseif (Datpg(/!, /2) = INDISTINGUISHABLE)) { 

if (CollapsingConditionsSatisfied(/i, fo)) { 
Collapse(/i, /2); // Dynamic fault collapsing here 

} 
else{ 

MarkIndistinguishable(/i,/2); 
Identifylmplicitlndistinguisliabilities(/i, /2); 
// Implicit Identification 

} 
} 
else {//ABORTED 

MarkAborted(/i, /2); 
} 

} 

Figure 2: New DATPG algorithm 

The new DATPG algorithm, is shown in Figure 2. We 
note again that it is necessary to store a fault pair explic- 
itly as indistinguishable in the new algorithm only when the 
conditions required for collapsing the pair into a single fault 
fail. (This occurs only for sequential circuits and occurs pre- 
cisely when initialization cannot be verified for at least one 
of the faults.) We also note that the sequentially collapsed 
list of faults is available at the completion of the new algo- 
rithm. 

4.1   On the complexity of DATPG 

In this subsection, we show that the complexity of diag- 
nostic test pattern generation, using fault collapsing and im- 
plicit identification of sequential indistinguishability, is of 
the same order of complexity as detection-oriented test pat- 
tern generation. In order to estimate the computational com- 
plexity of the test generation algorithms, a basic operation 

that can be used to measure the number of steps required by 
a test generation algorithm is introduced. This operation is 
illustrated in Figure 3. A basic diagnostic engine is invoked 
either to distinguish a pair of faults or to claim that the pair 
is indistinguishable. It is to be noted that both diagnostic 
test generation and detection-oriented test generation can 
be modeled in terms of this basic framework, with the pah- 
passed to the diagnostic engine consisting of the good and 
the faulty machine in the case of detection-oriented test gen- 
eration and consisting of two faulty machines for diagnostic 
test generation. It is also pointed out that, in this analysis, 
the complexity of fault simulation is not considered because 
simulation is typically significantly less expensive than test 
pattern generation. 

Let us now assume that each query to the diagnostic en- 
gine involves a cost of one computational unit. This, of 
course, is not necessarily a correct assumption but it is in- 
structive to analyze the complexity of boüi the procedures 
subject to this assumption. Let the total number of faults 
be / and the number of initializable faults be fa. Let us 
also assume that the fraction of total faults that are initial- 
izable is p. Further, let us assume that q = 1 - p. We 
will demonstrate later that the typical values of p are close 
to 1 through experimental results. We first note that using 
the simple DATPG algorithm where each pair of faults is 
explicitly passed to the DATPG engine, the complexity of 
the entire procedure becomes /(/ - l)/2. We now demon- 
strate that our unproved results permit the reduction of mis 
complexity to 0(f) for typical values of p. 

DATPG 

ALGORITHM 
(includw ditjriMtk fault «imutation) 

FAULT PAIR 
DATPG 

ENGINE 

D or I or A 

(Vectors, if D) 

Figure 3: DATPG and the diagnostic engine 

Let us first finish the DATPG operation on pairs produced 
only by the set of initializable faults fo. The rest of the 
pairs will be considered later to complete the DATPG algo-* 
rithm. At the start of the DATPG algorithm, all the faults 
trivially belong to the same class. First, let us assume that 
the diagnostic engine being used in the model is perfect, 
i.e., the answer provided by the diagnostic engine is either 
distinguished or proven to be indistinguishable. We shall 
consider the case of aborted faults later in the analysis. At 
each step of the DATPG algorithm, a fault pair whose status 
is as yet unknown (i.e., bom the faults belong to the same 
current class) is passed to the diagnostic engine. The result 
provided by the diagnostic engine introduces the following 
changes in the current list of classes: 

• If the result of the operation is distinguished, then the 



number of classes must increase by at least 1. (Of 
course, the increase may be much larger because the 
vectors produced may incidentally partition the classes 
into several classes.) 

• If the result of the operation is indistinguishable, then 
the number of faults decreases by 1 because the two 
faults can now be collapsed into a single fault. 

However, the maximum number of classes possible is lim- 
ited by fi and the minimum number of faults remaining 
in the DATPG algorithm is limited by 1. It is also clear 
that both the numbers (number of classes and number of 
faults) vary monotonically. Hence, the maximum number 
of steps required by the DATPG algorithm is limited by 2f{, 
i.e., 2pf. The number of remaining fault pairs is given by 
Plf2 + 9/(9/-l)/2 which is less \haapqf2 + q'2f2/2. 
Therefore, the total cost of the diagnostic procedure can be 
represented by 2pf + pqf2 + q2f2/2. If g is sufficiently 
small, then this expression has the complexity 0(f). 

Now, if we remove the assumption about aborted faults 
and assume that the diagnostic engine does abort fault pairs, 
then the analysis can be modified appropriately. If the to- 
tal number of fault pairs aborted by the diagnostic engine 
is a, then that is exactly the additional number of opera- 
tions that may be required by the DATPG algorithm (be- 
cause an aborted fault pair neither permits a collapsing oper- 
ation nor contributes to an increase in the number of classes 
and is, in that sense, a wasted computation). The cost of 
the DATPG algorithm is thus represented by the expression 
2pf + pqf2 + q2f2/2 + a. If the number of aborted 
fault pairs can be assumed to be small (by a good diagnostic 
engine), then the complexity can still be seen to be 0(f). 

It is easy to see that even a detection-oriented ATPG algo- 
rithm can indeed take 0(f) steps (if each faulty machine is 
initialized, the corresponding fault is distinguishable from 
each of the other faults and there are no incidental detec- 
tions). Hence, this analysis shows that both DATPG and 
ATPG are of the same order of complexity. 

We also note that the above analysis can be repeated 
for the multiple observation time test strategy assuming ei- 
ther the property of strong connectivity or synclironizability 
(similar to the use of initializability here) to arrive at the 
same conclusions about the complexity of DATPG. 

Having performed the above analysis on the complexi- 
ties of DATPG and ATPG, we now present a caveat that is 
introduced by the practical use of these procedures. In prac- 
tice, DATPG often follows ATPG; this implies that many of 
the fault pairs that are easy to distinguish are distinguished 
incidentally. Hence, the fault pairs that are left to be tar- 
geted explicitly by the DATPG algorithm are often difficult 
and hence may contribute to the additional difficulty of the 
DATPG procedure. In addition, the assumption about the 
cost of the simulation step being much less than that of test 
generation step may not always be correct. 

5   Experimental Results 

Results on initialization and DATPG 

In this section, we demonstrate the improvements provided 
by the results developed in this paper using the restricted 
single observation time test strategy. This is the chosen 
strategy because of its practicality with respect to large cir- 
cuits and its wide-spread use. Because the test strategy is 
RSOTS, the state property of concern for enabling the re- 
sults developed is initializability. As we have already noted, 
a machine corresponding to an initialized fault is initializ- 
able. Because it is easy to verify the initialization of a faulty 
machine with a given set of vectors, that is our approach. 

Results that show the improved computations in DATPG 
possible using the improved DATPG algorithm are pre- 
sented in Table 1. Recall that improvements in complexity 
were achieved from the original value of /(/ - l)/2 to the 
improved value of 2pf + pqf2 + qf(qf - l)/2, where 
p is the fraction of initializable faults and q is the fraction 
of faults not initialized. The results presented in the table 
show the total faults, the number of initialized faults (using 
HITEC/STG3 [21,22] vectors), the number of faults that 
are not initialized, the number of pairs that would have to be 
handled by the old DATPG algorithm, the number of pairs 
that would have to be handled by the new DATPG algorithm 
and the percentage ratio between the new and the old costs. 
These results show that it is indeed possible to tackle the 
DATPG problem for the entire set of faults for many practi- 
cal circuits. 

Results on Fault Collapsing 

The results of a fault collapsing experiment are shown in 
Table 2. The first column of the table shows the benchmark 
circuit and the second column shows the total number of 
faults. These faults were processed to first remove combi- 
nationally (full-scan) redundant faults (to obtain the number 
Nfsr). The obtained faults are then collapsed by applying a 
combinational equivalence prover (DIATEST [6]). The re- 
sulting number of faults is shown by the column FscNfsr. 
Undetected faults (using HITEC [21] vectors) are then re- 
moved from this list of faults to obtain the set of faults, in- 
dicated by NuFscNfsr. These faults are processed with the 
new fault collapsing diagnostic test generator that was built 
on top of the diagnostic test generator DIAGGEN [14] to 
obtain the sequentially collapsed list of faults, SeqcNuFsc- 
Nfsr. The untestable faults that were removed were then 
added back to this list of faults to get the list of faults 
indicated by SeqcFscNfsr. The final list of sequentially 
collapsed faults is obtained by adding back representative 
faults from the combinationally redundant faults (just one 
fault is sufficient when the good circuit is initializable) and 
is shown by column SeqcFsc. It is clear from the numbers 



Table 1: DATPG comparison 

Ckt. Total Faults Init. Not Init. Old DATPG 
#Pairs 

New DATPG 
#Pairs 

% Ratio 
(New/Old) 

s298 308 299 9 47278 3325 7.03 
s344 342 329 13 58311 5013 8.60 
s400 428 413 15 91378 7126 7.80 
s526 555 538 17 153735 10358 6.74 
s641 467 460 7 108811 4161 3.82 
s713 581 574 7 168490 5187 3.08 
s820 850 849 1 360825 2547 0.71 
s832 870 869 1 378015 2607 0.69 
s953 1079 3 1076 581581 581584 100.00 

sl238 1355 1355 0 917335 2710 0.30 
si 423 1515 1450 65 1146855 99230 8.65 
sl488 1486 1484 2 1103355 5937 0.54 
sl494 1506 1504 2 1133265 6017 0.53 
s5378 4603 4567 36 10591503 174176 1.64 

s35932 39094 39084 10 764150871 469053 0.06 

Table 2: Fault collapsing results 

Ckt. Faults Nfsr FscNfsr NuFscNfsr SeqcNuFscNfsr SeqcFscNfsr SeqcFsc 
s298 308 308 288 256 183 215 216 
s344 342 342 337 330 255 262 263 
s526 555 554 523 128 102 497 498 
s641 467 467 460 405 337 392 393 
s713 581 542 469 413 338 394 395 
s820 850 850 814 778 755 791 792 
s832 870 856 816 777 755 794 795 

S1238 1355 1286 1251 1248 1209 1212 1213 
sl423 1515 1501 1361 553 430 1238 1239 
sl488 1486 1486 1465 1426 1395 1434 1435 
sl494 1506 1494 1469 1431 1401 1439 1440 
s5378 4603 4563 4190 2921 2645 3914 3915 
s35932 39094 35110 25476 25235 25235 25476 25477 

in this table that the size of the fault lists may be consider- 
ably reduced beyond the standard structural fault collapsing 
[3] that is widely used. 

Results of Untestability Identification using 
Indistinguishability Identification 

In the experiments performed here, the set of aborted faults 
produced by the HITEC test generator [21] is taken and 
pairs of faults are created by pairing them with (initializ- 
able) combinationally redundant faults. These fault pairs 
are injected in the last (rightmost) frame of a combination- 
ally expanded version of the sequential circuit (expanded 
10 time frames in this experiment) and their equivalence is 
examined (by the diagnostic test generator DIATEST [6]). 
If the fault pair is proven to be equivalent, then the fault is 

proven to be untestable in the original, sequential, circuit. 
Table 3 provides the untestability identification results. 

The number of initializable, combinationally redundant 
faults is provided in column 4. Results are presented only 
for those circuits for which at least one initializable, combi- 
nationally untestable fault could be identified. Columns 1, 
2, 3, 5, 6 and 7 stand for circuit name, number of proven 
untestable faults, number of aborted faults, number of can- 
didate pairs, number of pairs proven to be indistinguishable 
and the number of faults proven to be untestable, respec- 
tively. The last column presents the CPU time in seconds, 
as measured on a SUN Ultrasparcl workstation with 58 MB 
of main memory. These results demonstrate that it is possi- 
ble to utilize the power of indistinguishability identification 
even for untestability identification. 



Table 3 : Untestability identification 

Ckt. Untest. Aborted Comb. Red. Candidate Proven Proven Time 
Faults Faults Faults Pairs Pairs Faults (sec) 

s526 17 487 1 487 21 21 1190 
s832 46 8 14 112 70 5 234 

sl423 11 949 14 13286 32 5 14433 
sl494 40 17 12 204 132 11 1066 
s5378 148 1303 40 1303 618 618 17479 

s35932 3984 10 3984 1000 0 0 123 

6    Summary 

State space properties were used to derive conditions un- 
der which sequential fault collapsing can be permitted. This 
was used to provide a result that partitions the set of faults 
into disjoint classes. This partition is arrived at by demon- 
strating that the class structure corresponds to a mathemat- 
ical equivalence class structure. The results presented per- 
mit the design of a diagnostic test generation algorithm that 
has the same order of complexity as a regular, detection- 
oriented test generation algorithm. The results have also 
been effectively used for identifying untestable faults. Ex- 
periments on benchmark circuits were used to demonstrate 
the results. 
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